

Overview

An end mill is a cutting tool used in industrial machining applications. An end mill bit can generally cut in all directions, though some cannot cut axially. End mills are used in milling applications such as profile milling, tracer milling, face milling and plunging.

What are the Different Types of End Mills?

A broad category of end mills exists, such as single end, double end, center-cutting, non center-cutting, ball nose and roughing.

Each category may be further divided by application and special geometry. End mills are sold in both imperial and metric sizes, depending on the country of origin.

Applications

End mills are used in machining applications such as profile milling and face milling. Depending on the material being machined, different tool types and geometries may be used.

Remember

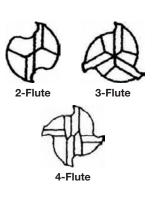
 Always wear eye protection when using any cutting tool

• Use a good quality cutting fluid

 Store end mills properly when not in use

(1 of 8)

What are End Mills Made From?	Lawson carries end mills made from two different mate Cobalt end mills are ideal for any milling application. Ca and feed rates, but should only be used on stable, high M42 Cobalt 2-Flute Single End Center-Cutting 4-Flute Single End Center-Cutting 4-Flute Single End Ball Nose 4-Flute Single End Coarse Rougher 2-Flute Double End Center-Cutting Supertanium [®] II Triple-Cut (3-Flute) Center-Cutting	rbide end mills offer higher speed							
Coatings	 life and higher feeds and speeds are operating object chip flow, prevents buildup and reduces cutting forces and improves chip formation to extend tool life. It is a materials, die molds, and for components requiring retrins coating is available on Lawson's 2- and 4-flute M TiCN – Titanium Carbonitride (a bluish-grey coat This is a coating with exceptionally high hardness and excellent wear resistance. TiCN performs well when coating provides an excellent surface quality on mach applications which require high feed and speed rates. 2-Flute Carbide End Mills for aluminum cutting. Nitride/Gold Oxide (a black and gold coating) Combines the advantages of the lubricity of oxide with Recommended for abrasive ferrous applications. Not as aluminum, magnesium or similar non-ferrous applications. 	deal coating for a wide range of applications, materials and cutting conditions where tool ad higher feeds and speeds are operating objectives. The high lubricity of TiN facilitates flow, prevents buildup and reduces cutting forces and temperatures. TiN reduces wear mproves chip formation to extend tool life. It is a good choice for machining iron-based rials, die molds, and for components requiring resistance to abrasive and adhesive wear. coating is available on Lawson's 2- and 4-flute M42 Cobalt End Mills. – Titanium Carbonitride (a bluish-grey coating) is a coating with exceptionally high hardness and low coefficient of friction which provides lent wear resistance. TiCN performs well when cutting alloy steels, stainless steels, and h-speed cutting where moderate temperatures are generated at the cutting edge. TiCN ng provides an excellent surface quality on machined components. It is also excellent for cations which require high feed and speed rates. This coating is available on Lawson's te Carbide End Mills for aluminum cutting.							
End Mill Selection	Utilize the shortest available tool possible for the applica permissible and the shortest flute length that depth of c is also important in determining what end mill should be	cut allows. The point style of the end mill							
Flutes									
	2-Flute End Mills allow maximum chip volume and are uslots, or peripheral milling. These multipurpose tools allow and dimensional accuracy are not critical. When plunge approximately 25% to 50% of the feed per tooth.	ow high feed rates where part finish							
	a higher chip volume area than 4-flute designs for higher have all the machining capabilities of 2-flute end mills, a	have less cut interruption than 2-flute designs. They have te designs for higher metal removal rates. 3-flute end mills f 2-flute end mills, and are ideal for slotting applications. al accuracy can be achieved in a wider range of materials							


4-Flute End Mills are stronger than either 2- or 3-flute designs. The added rigidity allows higher metal removal rates with minimum deflection. Improved workpiece finishes and dimensional accuracy can be achieved. Limited chip volume area restricts stock removal rates and deep plunge cutting is not recommended. The 4-flute design is commonly used for finishing operations for the best surface finish.

(2 of 8)

End Mill Selection (cont.)

Point Styles

When choosing an end mill, the point style is just as important as the number of flutes or the tool length. Lawson offers 2-, 3- and 4-Flute Center-Cutting, 4-Flute Non Center-Cutting and 4-Flute Ball Nose end mill styles.

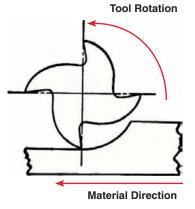
Center-Cutting

At least one of the end teeth extends to the center of the end mill. This allows the end mill to plunge directly into the material because material is removed from the entire diameter.

Non Center-Cutting

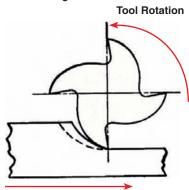
None of the end teeth extend to the center of the end mill. There is a female center on the tip of the end mill where no material would be removed if it was used in plunge milling applications. These end mills are designed primarily for peripheral milling.

4-Flute


Ball Nose

Ball nose end mills have a rounded point for radiused cutting applications. They are commonly used to machine the rounded grooves for o-rings. Ball nose end mills can be used to plunge cut, but the cut must be combined with the action of a slotting cut. It can not be plunged straight down into the material.

Types of Milling


Conventional Milling

The end mill revolves opposite to the direction of the table feed. The width of the chip starts at zero and increases to a maximum at the end of the cut. This type of milling can lead to accelerated wear.

Note: Make sure workpiece is secure before beginning milling operation.

Climb Milling

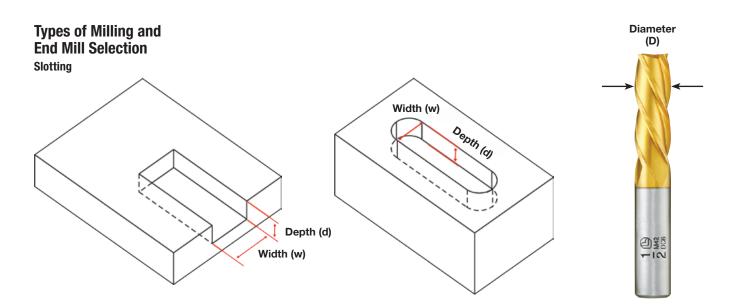
The end mill revolves in the same direction as the table feed. The tooth meets the workpiece at the top of the cut, producing the thickest part of the chip first. Note: Make sure workpiece is secure before beginning milling operation.

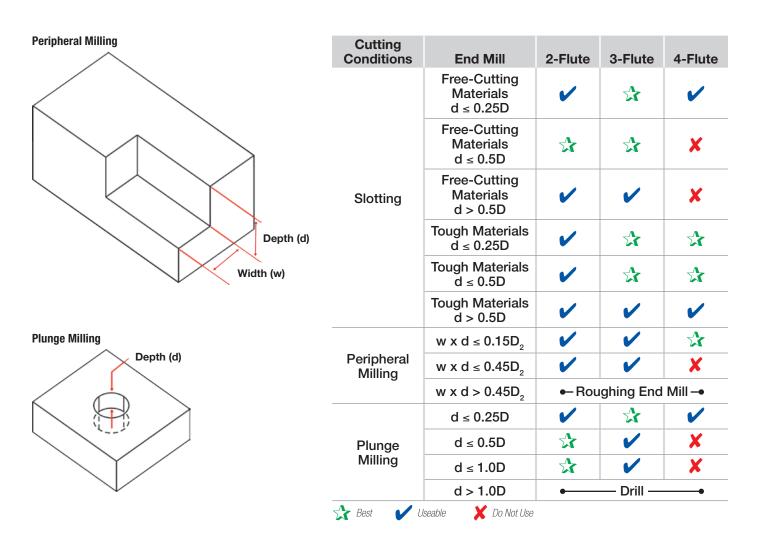
Material Direction

Peripheral Milling

The surface is milled parallel to the end mill axis. Peripheral milling can be either conventional or climb milling.

Plunge Milling/Slotting




(4 of 8)

Plunge Milling: The direct movement between the workpiece and the center line of the end mill when the end mill sinks directly into the workpiece. The action of drilling a hole with a center-cutting end mill.

Slotting: All slotting applications are a combination of conventional milling and climb milling.

(5 of 8)

Proper Speeds and Feeds

Before the machining operation can be performed, the proper speeds and feeds need to be selected. Using the proper speeds and feeds for the material being machined extends tool life and the appearance of the machined face.

Lawson's Cobalt and Carbide End Mills each have their own speed and feed charts. Roughing End Mills speed and feed chart is listed below.

Since all speed and feed charts give a range for the speed to use, here are some general guidelines to help determine the proper speed to use.

Use lower speed ranges for:

Hard Materials Tough Materials Abrasive Materials Heavy Cuts Minimum Tool Wear Maximum Cutter Life

Use higher speed ranges for:

Softer Materials Better Finishes Smaller Diameter Cutters Light Cuts Frail Workpieces or Setups Hand Feed Operations Maximum Production Rates Non-metallics

Reminder: When using a carbide end mill, the cutting fluid must either be continuously flowing over the end mill or no cutting fluid should be used. Intermittent cooling of a carbide tool can cause it to chip.

Roughing End Mills Speed and Feed Data

		Chip Load Per Tooth								
Material	SFM	1/8"	1/4"	1/2"	1"					
Aluminum Alloys	125 – 250	0.0010	0.0020	0.0025	0.0030					
Magnesium	125 – 250	0.0010	0.0020	0.0025	0.0030					
Copper	75 – 100	0.0008	0.0015	0.0030	0.0060					
Brass	85 – 110	0.0008	0.0015	0.0030	0.0060					
Bronze	75 – 100	0.0008	0.0015	0.0030	0.0060					
Cast Iron	100 – 125	0.0008	0.0015	0.0025	0.0050					
Cast Steel	75 – 100	0.0008	0.0015	0.0025	0.0050					
Malleable Iron	80 - 120	0.0008	0.0015	0.0025	0.0050					
Stainless Steel										
Free Machining	75 – 90	0.0005	0.0007	0.0012	0.0020					
Other	50 – 75	0.0005	0.0007	0.0012	0.0020					
Steel										
Annealed	100 – 125	0.0010	0.0020	0.0040	0.0060					
Rc 18-24	75 – 100	0.0070	0.0012	0.0030	0.0050					
Rc 24-37	40 – 75	0.0005	0.0010	0.0020	0.0040					
Titanium										
Up to Rc 30	40 – 75	0.0005	0.0012	0.0025	0.0050					
Rc 30+	20 – 25	0.0005	0.0010	0.0020	0.0035					
High-Temperature Alloys										
Austenitic	12 – 20	*	0.0007	0.0015	0.0030					
Ferritic	50 – 75	0.0004	0.0007	0.0020	0.0050					
Nickel Base	20 – 25	0.0004	0.0007	0.0015	0.0030					
Cobalt Base	8 – 15	*	0.0007	0.0015	0.0030					

All speeds and feeds are suggested starting points. They may be increased or decreased depending on machine condition, depth of cut, finish required, etc.

List of Symbols

Machining Formulas

 $SFM = 0.262 \times D \times RPM$

$$\mathsf{RPM} = \frac{3.82 \times \mathsf{SFM}}{\mathsf{D}}$$

$$IPR = \frac{IPM}{RPM} \quad or \quad Chip \ Load \ x \ F$$

 $IPM = RPM \times IPR$

$$Chip Load = \underline{IPM} or \underline{IPR} \\ RPM \times F F F$$

Cobalt HS	S En	d M	lill	S	pe	e	d a	nd	IF	ee	d	D	at	a	_	Aj	pp	oli	ca	ti	on	IS	in	V	a	ric	ou	S	M	at	er	ia	ls
um, Wood	Feed	Chip Load Per Tooth	.00020005	.00020005	.0002001	.0002001	.0005002	.0005002	.0005002	.0005002	.0005003	.0005003	.0005003	.001004	.001004	.001004	.001004	.002 Up	-003 Up	.003 Up	.003 Up	.003 Up	-003 Up	.003 Up	.003 Up	.003 Up	003 Up						
Aluminum, Plastics, Wood	Speed 200-600 SFM	RPM	12,222 Up	8,146 Up	6,112 Up	4,074-12,222	3,056-9,168	2.038-6.114	1,746-5,238	1,528-4,584	1,356-4,071	1,222-3,666	1,110-3,330	1,018-3,054	938-2,814	872-2,616	514-2,442	764-2,292	680-2,040	612-1,836	556-1,668	510-1,530	470-1,410	436-1,308	408-1,224	382-1,146	358-1,074	340-1,020	322-966	306-918	290-870	278-834	264-792
onze, uminum, lastics	Feed	Chip Load Per Tooth	.00020005	.00020005	.0002001	.0002001	.0005002	.0005003	.0005003	.0005003	.0005004	.0005004	.0005004	.001006	.001006	.001006	.001006	.002 Up	.002 Up	.002 Up	.002 Up	.003 Up	-003 Up	.003 Up	.003 Up	.003 Up	-003 Up						
Brass, Bronze, Alloyed Aluminum, Abrasive Plastics	Speed 100-200 SFM	RPM	6,111-12,222	4,073-8,146	3,056-6,112	2,037-4,074	1,528-3,056	1.019-2.038	873-1,746	764-1,528	678-1,356	611-1,222	555-1,110	509-1,018	469-938	436-872	407-814	382-764	340-680	306-612	278-556	255-510	235-470	218-436	204-408	191-382	179-358	170-340	161-322	153-306	145-290	139-278	132-264
ron, teel, onze	Feed	Chip Load Per Tooth	.00020005	.00020005	.0002001	.0002001	.0005002	2001-2003	.001003	.001003	.001004	.001004	.001004	.002006	.002006	.002006	.002006	.002006	.003 Up	.003 Up	003 Up	dU 800.	.003 Up	dU E00.	.003 Up	.003 Up	.003 Up	-003 Up					
Cast Iron, Mild Steel, Half-Hard Brass and Bronze	Speed 80-100 SFM	RPM	4,888-6,111	3,259-4,073	2,440-3,056	1,625-2,037	1,222-1,528	815-1,222 815-1.019	698-873	611-764	543-678	489-611	444-555	407-509	379-469	349-436	326-407	306-382	272-340	244-306	222-278	204-255	188-235	175-218	163-204	153-191	144-179	136-170	128-161	122-153	116-145	111-139	106-132
s Steel, and Bronze, c Copper Forgings 0 C)	Feed	Chip Load Per Tooth	.00020005	.00020005	.0002001	.0002001	.0005002	.001003	.001003	.001003	.001004	.001004	.001004	.001004	.002006	.002006	.002006	.002006	.002006	.003 Up	-003 Up	.003 Up	.003 Up	.003 Up	.003 Up	.003 Up	.003 Up	-003 Up					
Machine Steel, Hard Brass and Bronze, Electrolytic Copper Mild Steel Forgings (20-30 C)	Speed 60-80 SFM	RPM	3,667-4,888	2,750-3,259	1,833-2,440	1,222-1,625	917-1,222	611-815	524-698	458-611	412-543	367-489	337-444	306-407	284-379	262-349	246-326	229-306	204-272	183-244	167-222	153-204	141-188	131-175	122-163	115-153	108-144	103-136	97-128	92-122	88-116	83-111	80-106 76-100
sistant se Alloys Strength s Steels Titanium (30-40 C)	Feed	Chip Load Per Tooth	.0002005	.0002005	.0002005	.0002005	.0002001	.0005002	.0005002	.001003	.001003	.001004	.001004	.001004	.001004	.002006	.002006	.002006	.002006	.002006	.003 Up	003 Up	003 Up	.003 Up	.003 Up	.003 Up	.003 Up	-003 Up					
Heat-Resistant Ferritic Base Alloys Medium Strength Stainless Steels Unalloyed Titanium Tool Steels (30-40 C)	Speed 40-60 SFM	RPM	2,444-3,667	1,629-2,750	1,222-1,833	815-1,222	611-917	409-733	349-524	306-458	272-412	244-367	222-337	203-306	189-284	175-262	163-246	153-229	136-204	122-183	111-167	102-153	94-141	87-131	81-122	76-115	72-108	68-102	64-97	61-92	58-88	56-83	53-80 51 76
High Strength Stainless Steels, High Tensile Steels (40-60 C) Medium Strength Titanium Alloys	Feed	Chip Load Per Tooth	.00020005	.00020005	.00020005	.00020005	.0002001	.0005002	.0005002	.0005003	.0005003	.001004	.001004	.001004	.001004	.001004	.001004	.002006	.002006	.002006	.002006	.003 Up	.003 Up	.003 Up	.003 Up	.003 Up	-003 Up						
High Strength Stainless Steels, High Tensile Steel (40-60 C) Medium Strength Titanium Alloys	Speed 20-40 SFM	RPM	1,222-2,444	815-1,629	611-1,222	407-815	306-611	203-407	175-349	153-306	136-272	122-244	111-222	102-203	94-189	87-175	81-163	76-153	68-136	61-122	55-111	51-102	47-94	43-87	40-81	38-76	36-72	34-68	32-64	30-61	29-58	28-56	27-53
Heat-Resistant Nickel Base Alloys, High Strength Stainless Steels, High Strength Titanium Alloys	Feed	Chip Load Per Tooth		.00020005	.00020005	.00020005	.0002001	.0002001	.0005002	.0005002	.0005002	.0005002	.0005002	.001004	.001004	.001004	.001004	.001004	.0015005	.0015005	.0015005	.002 Up	.002 Up	.002 Up	-003 Up	-003 Up	.003 Up	.003 Up	.003 Up	.003 Up	.003 Up	.003 Up	-003 Up
Heat-Res Nickel Base High Stre Stainless High Stre Titanium	Speed 15-20S FM	RPM	1	611-815	456-611	306-407	229-306	153-203	131-175	115-153	104-136	92-122	84-111	76-102	71-94	65-87	62-81	58-76	51-68	46-61	42-55	38-51	35-47	32-43	30-40	29-38	36	34	32	30	29	28	27
Heat-Resistant Austenitic Alloys, High Tensile Steels (46-50 C)	Feed	Chip Load Per Tooth	1	I	I	.00020005	.0002001	.0002001	.0005001	.0005001	.0005002	.0005002	.0005002	.0005002	.001003	.001003	.001003	.001003	.0015004	.0015004	.0015004	.0015004	.002 Up	.002 Up	.002 Up	003 Up.	dU 800.	dU 800.	003 Up.	.003 Up	003 Up.	dU E00.	.003 Up
Heat- Austen High Tei (46	Speed 10-15 SFM	RPM	ı	I	ı	204-306	153-230	122-153	88-132	76-115	68-104	61-92	56-84	51-76	47-71	44-65	40-62	38-58	34-51	31-46	28-42	26-38	35	32	30	29	28	26	25	23	22	21	20
Heat-Resistant Cobalt Base Alloys, High Tensile Steels (50-55 C)	Feed	Chip Load Per Tooth	1	I	I		3 .0002001	2 .0002001		3 .0005001	3 .0005002	.0005002	3 .0005002	.0005002	7 .001003	t .001003	001003		.0015004	.0015004	.0015004	.0015004	.002 Up	.002 Up	.002 Up	.002 Up	.003 Up	.003 Up	.003 Up	.003 Up	.003 Up	.003 Up	.003 Up
Hea Cobalt High T	Speed 5-10 SFM	End Mill Dia. RPM		3/32 –	- 1/8			3/10 01-122 3/8 51-102		1/2 38-76	9/16 34-68	5/8 31-61	11/16 28-56	3/4 26-51	13/16 24-47	-	15/16 20-40	1 19-38	1-1/8 34			1-1/2 26			1-7/8 20	2 19	2-1/8 18	2-1/4 17	2-3/8 16	2-1/2 15	2-5/8 15	2-3/4 14	2-7/8 14
Ma		8.0	Ē	Ű				<u> </u>	<u> </u>		0,		÷	.,	÷		≓́		÷	÷	÷	÷	-	-	÷		'.	'S	Ś	Ń	5	Ś	2

NOTE: All speed and feed data are suggested starting points. They may be increased or decreased depending on machine condition, depth of cut, finish required, coolant, etc. When using TIN-coated M42 cobalt cutters, increase speed rate by 25%.

Milling Problems	Possible Cause	Possible Solution								
Ohim	Cutting too much material	Adjust feed or speed								
Chip Packing	Not enough chip room	Use end mill with fewer flutes								
Facking	Not enough coolant	Apply more coolant, use air pressure								
	Feed too fast	Slow down to correct feed								
Rough	Slow speed	Use higher speed								
Surface	Too much wear	Regrind earlier stage								
Finish	Chip biting	Cut less amount per pass								
-	No tooth end concavity	Add margin (touch primary with oilstone)								
	Too much wear on primary relief	Regrind sooner								
Burr	Incorrect condition	Correct milling condition								
_	Improper cutting angle	Change to correct cutting angle								
	Condition too tough	Change to easier condition								
No	Lack of accuracy (machine and holder)	Repair machine or holder								
Dimensional Accuracy	Not enough rigidity (machine and holder)	Change machine or holder condition								
	Not sufficient number of flutes	Use end mill with greater number of flutes								
	Feed too fast	Slow down to correct feed								
No	Too great a cutting amount	Reduce cutting amount								
Perpendicular	Too long a flute or overall length	Use proper tool length, hold shank deeper								
Side	Insufficient number of flutes	Use end mill with greater number of flutes								
	Feed too fast	Slow down to proper feed								
Chipping	Feed too fast on first cut	Slow down on first bite								
	Not enough rigidity of tool and holder	Change rigid machine tool or holder								
	Loose holder	Tighten tool holder								
	Loose holder (workpiece)	Tighten workpiece fixture								
	Lack of rigidity (tool)	Use shortest end mill available, hold shank deeper, try down cut								
	Teeth too sharp	Change to lower cutting angle, primary relief								
	Speed too fast	Slow down, use more coolant								
-	Hard material	Use higher grade tool material, add surface treatment								
Wear	Biting chips	Change feed speed to change chip size or clear chips with coolant or air pressure								
	Improper feed speed (too slow)	Increase feed speed, try down cut								
-	Improper cutting angle	Change to correct cutting angle								
-	Primary relief angle too low	Change to larger relief angle								
	Feed too fast	Slow down feed								
	Cutting amount too large	Adjust to smaller cutting amounts per tooth								
Breakage	Flute length or overall length too large	Hold shank deeper, use shorter end mill								
-	Too much wear	Regrind at earlier stage								
	Feed and speed too fast	Correct speed and feed								
Chattering	Not enough rigidity (machine and holder)	Use better machine tool or holder or change condition								
	Relief angle too large	Change to smaller relief angle, add margin (tough primary with oil stone)								
	Loose holder (workpiece)	Hold workpiece tighter								
-	Cutting too deep	Correct to smaller cutting depth								
-										
		· · ·								
Short Tool Life (Dull Teeth)										
		· · · · · · · · · · · · · · · · · · ·								
	Flute length or overall length too large Cutting friction too high Tough work material Improper cutting angle	Hold shank deeper, use shorter end mill or try down cut Regrind at earlier stage Select premium tool Change cutting angle and primary								